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Abstract

Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles. An accurate determination of the
effective mechanical properties of nanotube bundles is important in order to assess potential structural applications such as rein-
forcement in future composite material systems. Although the intratube axial stiffness is on the order of 1 TPa due to a strong

network of carbon–carbon bonds, the intertube interactions are controlled by weaker, nonbonding van der Waals forces which are
orders of magnitude less. A direct method for calculating effective material constants is implemented in the present study. The
Lennard–Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli is obtained and

shown to exhibit a transversely isotropic constitutive behavior. The predicted elastic constants obtained using the direct method are
compared with available published results obtained from other methods.
Published by Elsevier Ltd.
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1. Introduction

Future nanostructured composite materials are
expected to incorporate carbon nanotube reinforcement
either dispersed individually or as nanofilamentary
bundles or ropes yielding unprecedented mechanical
properties. A carbon nanotube is a cylindrical molecule
composed of single or multiple walls of graphene sheets.
These sheets are, in turn, composed of hexagonal units
or graphene rings of carbon atoms that are bonded
through highly stable sp2 hybridized orbitals. A typical
carbon nanotube is schematically depicted in Fig. 1,
while Fig. 2 contains a cross-section of a bundle
ensemble of individual nanotubes obtained through
transmission electron microscopy (TEM) [1].

Numerous studies have been made to analytically and
experimentally determine the elastic properties of indi-
vidual nanotubes. Axial Young’s moduli on the order of
1 TPa have been measured using atomic force micro-
scopy (AFM) [2] and thermal vibrations [3]. Analytical
studies have utilized ab initio calculations [4], tight-
binding methods [5], molecular dynamic simulations
(MD) [6] and lattice dynamics [7,8]. These elastic prop-
erties are entirely based on the strong intratube valence
forces of the carbon–carbon bonds.

Nanotube ensembles, however, typically form hex-
agonally packed crystal configurations in which the
intertube force interactions are due exclusively to non-
bonding van der Waals effects which are much weaker
than the valence forces and are highly nonlinear. Less
consideration has been given to the transverse mechan-
ical properties of nanotube bundles which depend on a
good description of these non-bonding interactions.
These intertube cohesive properties are of special inter-
est for use in predicting the properties of carbon nano-
tube polymer composites [9] and fibers of helical
nanotube arrays [10]. Selected moduli of nanotube
bundles have been calculated with a continuum model
based on the integrated average of the discrete Len-
nard–Jones potential [11], MD simulation using the
Tersoff–Brenner potential [12] and lattice dynamic
methods [13,14].
0266-3538/03/$ - see front matter Published by Elsevier Ltd.

doi:10.1016/S0266-3538(03)00056-3
Composites Science and Technology 63 (2003) 1543–1550

www.elsevier.com/locate/compscitech
* Corresponding author. Tel.: +1-757-864-8079; fax: +1-757-864-

8912.

E-mail address: e.saether@larc.nasa.gov (E. Saether).

http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.elsevier.com/locate/compscitech/a4.3d
mailto:e.saether@larc.nasa.gov


For the present study, a direct summation of atom-pair
potentials is used to avoid any simplifications made to the
nonlinear van der Waals interactions. Because the funda-
mental constituents of nanotube bundles are only resol-
vable at nanometer length scales, analyses to predict
macroscopic properties must necessarily merge concepts
and techniques from continuum elasticity theory and dis-
crete molecular simulation. The basic approach of sub-
jecting a molecular ensemble to applied strain modes and
recovering effective moduli from energy measures has
been used in molecular dynamic simulations [15,16]. The
methodology developed herein combines a unit cell con-
tinuum model with molecular static calculations to deter-
mine effective moduli in aligned carbon nanotube bundles.

The Lennard–Jones potential is utilized to simulate
the van der Waals interaction forces among carbon
atom-pairs in aligned carbon nanotube arrays. An
achiral ‘‘zig-zag’’ configuration is assumed for the car-
bon nanotubes with 12 graphene units around the cir-
cumference. Using the standard Hamada index notation
[25], this configuration is referred to as a (12,0) nano-
tube. The resulting tube radius is assumed small such
that the cross-section can be considered rigid.

The objective of this work is to formulate a model
that combines principles from continuum elasticity and
molecular mechanics to predict the off-axis elastic
properties of carbon nanotube bundles. The calculated
moduli are shown to exhibit a transverse isotropy which
is anticipated for a material possessing hexagonal sym-
metry. The predicted moduli are compared with avail-
able published data.
2. Material constitutive relationship

The force field within a nanotube crystal consists of a
combination of strong linear bonding forces acting
within the nanotube and weak non-bonding forces act-
ing between adjacent nanotubes. This disparity between
the magnitude of interatomic forces leads to a highly
anisotropic constitutive relation. The minimum energy
configuration of a nanotube crystal assumes a hexagonal
packing arrangement. Considered as a solid material, the
hexagonal symmetry shown in Fig. 3 would be expected to
yield a material exhibiting transverse isotropy [17]. The
coordinate system assumed for individual nanotubes and
the form of the stress–strain relation is shown in Fig. 4.

A transversely isotropic material is defined by five
independent parameters, C11, C12, C44, C22 and C23. For
the transverse plane in a nanotube bundle, only two
Fig. 1. Single-walled nanotube.

Fig. 2. Typical nanotube bundle [1].
Fig. 3. Hexagonal symmetry in a nanotube bundle considered as a solid.
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independent elastic constants are required to describe
the isotropic properties. These constants are given by
the C22 and C23 stiffness coefficients, which are high-
lighted in the constitutive relation presented in Fig. 4.

Additional relationships between the material con-
stants in the transverse plane for a hexagonal system are
given by

K23 ¼ C22 þ C23ð Þ=2

G23 ¼ C22 � C23ð Þ=2 ð1Þ

where K23 and G23 are the transverse bulk and shear
moduli, respectively.

Because the axial stiffness of individual nanotubes has
been extensively reported in the literature, the current
effort will focus on completing themechanical description
by predicting the elastic moduli in the transverse plane.
3. Modified unit cell formulation

In micromechanical analyses, the method of unit cells
has been used to determine the effective properties of
heterogeneous materials by identifying and analyzing
convenient domains of repeating microstructure. In the
current study, a repeating unit of nanotubes is defined
and subjected to continuous field deformation modes,
during which the system energy is calculated. Because
the potential energy of the system is due to atom-pair
interactions between adjacent nanotubes, a special type
of boundary condition is imposed which is termed ‘per-
iodic’. Under periodic boundary conditions (PBC’s),
cells of nanotubes in the transverse plane and nanotube
segments in the axial dimension are treated as images of
the constituents within the cell and used in the calcula-
tion of potential energy. This permits interactions
between atom-pairs across the boundary to avoid
introducing discontinuities in the force field. In general,
these conditions ensure conservation of mass and
energy, avoid surface or boundary effects, and mathe-
matically give the primary unit cell a strict periodicity
such that it can be considered to represent an infinite
ensemble of molecules [18]. By combining concepts
from continuum elasticity and molecular dynamics,
these representative units will be referred to herein as
‘PBC-unit cells’. Fig. 5 shows an assemblage of a square
PBC-unit cell of nanotubes with surrounding image
tubes that are required in applying periodic boundary
Fig. 4. Nanotube coordinate system and constitutive law for transverse isotropy.
Fig. 5. PBC-unit cell showing outside periodic image nanotubes in the (2,3)-plane and image atoms in the (1,2)-plane.
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conditions. Arrows in Fig. 5a represent the interaction
of adjacent nanotubes within the cell and interactions
that occur across the boundary with an image cell. A
cross-section through the (1,2)-plane depicted in Fig. 5b
shows image atoms outside the PBC-unit cell along the
axial dimension of the nanotubes.

PBC-unit cells can be constructed of arbitrary order
but, with a proper definition of the repeat geometry, the
unit energy of the primitive cell remains the same.
Therefore the lowest order cell is used for computations.
A minimum-order hexagonal PBC-unit cell containing a
single nanotube with surrounding image cells is shown
in Fig. 6.

The initial equilibrium configuration of the hexagonal
unit cell is determined by minimizing the energy of the
system as the nanotubes are moved radially outward
from a fixed center. This establishes the equilibrium
radius, Req, and the nanotube center-to-center separa-
tion distance, S, as shown in Fig. 7.

The radius of an achiral (N, 0) nanotube can be cal-
culated as

Rnt ¼

ffiffiffi
3

p

2�
bN ð2Þ

where b is the carbon–carbon bond length and N is the
number of graphene units around the nanotube cir-
cumference.

A rigorous definition of the PBC-unit cell dimensions
is required to ensure invariance of the unit energy with
cell size. The required planar area of the PBC-unit cell is
given by

Acell ¼
3

2
M

ffiffiffi
3

p
R2

eq ð3Þ

where M is the number of nanotubes within the cell.
The effective depth of the PBC-unit cell is obtained by

first selecting a number of repeat units (circumferential
rings of graphene), Kseg, and adding one additional unit
to account for the boundary distance between primary
and image segments in the positive and negative axial
dimension. Next, as depicted in Fig. 8, the total area of
the enclosed graphene units is equated to the surface
area of a perfect cylinder having the same radius as the
nanotube. This yields a simple expression for the effec-
tive depth of the PBC-unit cell given by

deff ¼
3

2
b Kseg þ 1
� �

ð4Þ
4. Potential energy calculations

The intertube forces are typically modeled by the
Lennard–Jones potential to represent van der Waals
interactions. The Lennard–Jones or ‘6–12’ potential
energy function (Fig. 9) is given by

F ¼ 4"LJ
�LJ
rij

� �12

�
�LJ
rij

� �6
" #

: ð5Þ

where "LJ is the depth of the energy well, �LJ is the van
der Waals radius, and rij is the separation distance
between the ith and jth atoms in a pair. The r�6

ij term
represents the attractive contribution to the van der
Waals forces between neutral molecules. It includes
permanent dipole–dipole interactions, the induction
Fig. 7. Equilibrium radius definition for hexagonal cell.
Fig. 8. Effective cylinder length of nanotube.
Fig. 6. Minimum hexagonal PBC-unit cell with surrounding image

cells.
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effect of permanent dipoles, and instantaneous dipole
induced dipole interactions which are sometimes refer-
red to as the London dispersion forces. The other com-
ponent of the van der Waals interactions mimics the
repulsion between overlapping electron clouds and is
modeled by the r�12

ij term which is short ranged [18,19].
5. Analysis methodology

The methodology used to determine selected nano-
tube crystal properties involves defining an appropriate
PBC-unit cell, applying selected strain modes to the
crystal, and computing the potential energy due to
atom-pair interactions as a function of the deformation
kinematics. A direct transformation to continuum
properties is then made by assuming that the potential
energy of discrete atom interactions is equal to the
strain energy of a continuous substance occupying the
volume of the unit cell.

Effective elastic constants are then determined from
the variation in the system strain energy density as
Cij ¼
@2Uo

@"i@"j
ð6Þ

where Cij is the material stiffness, Uo is the strain energy
density, and "k is an applied strain mode. The original
volume is used to compute the energy density, thereby
yielding Lagrangian strain measures.

Strain modes are applied to the nanotubes in the
crystal by the imposition of specific deformation fields.
The G23 shear modulus for a hexagonally packed nano-
tube array is calculated using a PBC-unit cell subjected
to a pure shear strain mode as shown in Fig. 10.

The magnitude of the shear strain is given by twice
the shear angle or �23 ¼ 2�. During a progressive defor-
mation with increasing �, the potential energy is com-
puted by summing all atom-pair interactions between
adjacent nanotubes at sequencial deformation incre-
ments. The G23 shear modulus is then obtained from the
second derivative of the elastic strain energy density, Uo,
using a finite difference approximation. This approx-
imation is given by

G23 ¼
@2Uo

@�2
23

¼ 4
Uo;iþ1 � 2Uo;i þUo;i�1

�23;iþ1 � �23;i�1

� �2 ð7Þ

where i is the increment in applied strain.
The bulk modulus is computed by applying a dilata-

tional strain as shown in Fig. 11. Because the strain in
the axial dimension, "11, is assumed to be zero, the
dilation is defined as e ¼ "22 þ "33 with "22 ¼ "33 ¼ ".
The modulus is then obtained by applying Eq. (7) using
a strain given by 2".

The calculation of the Young’s modulus E22 and the
Poisson’s ratio 
23 is performed by applying "22 strain
increments in the 2-direction and repositioning the tubes
in the 3-direction to minimize the energy. The transverse
repositioning of the tubes perpendicular to the load axis
directly gives a measure of the "23 strain from which the
Fig. 9. Shape of the Lennard–Jones potential function.
Fig. 10. Imposed shear deformation on hexagonally packed nanotube array.
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Poisson ratio is determined as 
23 ¼ �"23="22. This is
depicted in Fig. 12.

The C22 stiffness coefficient is obtained by applying
the same deformation mode defined in Fig. 12, with no
lateral deformation.
6. Results and discussion

In the present study, a crystal of identical single-walled
nanotubes is analyzed. The carbon–carbon bond length
is prescribed as 1.42 Å. All nanotubes were arbitrarily
assigned an achiral zig-zag (12,0) conformation with a
radius, Rnt, of 0.471 nm. Equilibrating the system resul-
ted in an equilibrium separation distance of the crystal,
Req, of 0.727 nm and a nanotube center-to-center
separation distance of 1.26 nm. Nanotubes of this size
may be considered rigid in the transverse direction
[12,13]. Therefore, the only degree of freedom included in
the deformation kinematics is the relative motion of the
nanotube center, and the only contribution to the
potential energy changes with imposed motion is com-
puted using the Lennard–Jones potential. The para-
meters used in the Lennard–Jones potential are "LJ=34
K and �LJ=0.3406 nm [13,20]. The potential energy of
this system in its equilibrium state from the intertube
Lennard–Jones contributions alone is 0.57 kcal/mol. For
comparison, a single C–C bond has a dissociation energy
of 83.1 kcal/mol [24]. A comparison between predicted
elastic moduli using the current direct method and results
obtained using alternate approaches is presented in
Table 1. Refs. [13] and [14] utilize a lattice dynamics
approach while Ref. [12] is based on a molecular
dynamic simulation. From the limited published results
it is clear that there is a wide variation in predicted elastic
moduli for nanotube bundles. All the results listed in
Table 1 for the present analysis were computed indepen-
dently, none were derived from a subset of other values.

For a 3-D solid exhibiting hexagonal symmetry, the
expression for the transverse Young’s modulus, E22, is
given by [13]

E22 ¼
C33 � C32ð Þ C33 þ C32ð ÞC11 � 2C2

31

� 	
C33C11 � C

2
13

� � ð8Þ

Because the axial modulus of the nanotubes in the
crystal is generally two orders of magnitude greater than
Fig. 11. Imposed dilatational strain on hexagonally packed nanotube array.
Fig. 12. Calculation of Poisson’s ratio.
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the transverse moduli, we may take C11 >> C33, C32,
C31. Using the relationship C23 ¼ 
23C22 and equating
Poisson ratios under transverse plane isotropy as

23 ¼ 
32, Eq. (8) reduces to a simple relationship
between C22, E22 and 
23. Substituting the calculated
values for the Young’s modulus E22 and Poisson’s ratio

23 into the resulting expression, the transverse normal
stiffness is obtained as

C22 ¼
E22

1� 
2
23

¼
60:3

1� 0:342
¼ 68:2 GPa ð9Þ

which closely agrees with the independently calculated
value of C22 in Table 1. Next, computing C23 as

23C22=23.2 GPa and applying the relations given by
Eq. (1), it is found that the transverse plane stiffnesses
are recoverable from the computed shear and bulk
moduli as

C22 ¼ K23 þ G23 ¼ 45:8þ 22:5 ¼ 68:3 GPa ð10Þ

C23 ¼ K23 � G23 ¼ 45:8� 22:5 ¼ 23:3 GPa

Thus, the computed elastic constants are completely
self-consistent for a transversely isotropic material as
expected due to hexagonal symmetry. The values
reported in Ref. [13] (Table 1) are also self-consistent
for transverse isotropy and compare favorably with the
present analysis for the prediction of the bulk modulus,
K23. The results from a molecular dynamics simulation
presented in Ref. [12] (Table 1) are slightly lower. The
calculation of the normal stiffness, C22, which is
obtained from applying a similar deformation as that
used to compute the bulk modulus (applying only "22
instead of both "22 and "33), is intermediate between the
lattice dynamics studies presented in Refs. [13] and [14]
(Table 1). In Ref. [14] nanotubes of the same radius
were used but with different chirality. However, the
effect of chirality is discussed in Ref. [13] in which it is
shown for several cases that the configuration of gra-
phene units on the nanotube surface has a negligible
effect for small radius tubes (R<16 Å).

The C23 value derived here using G23 and K23 in Eq.
(10) or E22 and 
23 in Eq. (9) are self-consistent and
yield a value of 23 GPa. The only other available com-
parison for C23 is in Ref. [13] which presents a value of
32 GPa. Another value not reported in the literature is
the transverse shear modulus G23 for which the present
analysis yields 22.5 GPa. This value varies from 20.2
GPa to 24.7 GPa with 10% variation in the Lennard–
Jones �LJ and "LJ parameters. If one applies the first of
the relations given in Equations (1) to the data in Ref.
[13], one obtains a value for G23 of 5.3 GPa. This lower
value of the shear modulus is comparable to the shear
modulus associated with parallel planes in graphite,
which is experimentally measured as 4.0 GPa [21,22].

In the direct summation and lattice dynamic methods,
the physics of cohesion are identically represented by
the same parameterization of the Lennard–Jones
potential. Possible differences in predictions using lattice
dynamics may be due to the inherent integral averaging
of force constants used in the lattice dynamical matrix
and the a priori selection of interacting nearest-neighbor
atoms used in defining the primitive lattice cell, both of
which are avoided in the direct method.

A potential source of inaccuracy affecting all methods
is the form of the Lennard–Jones potential function
itself. The Lennard–Jones potential was originally
developed for noble gases and is known to produce
poor results in other applications including graphite. It
gives good results for the C33 modulus (interplanar
separation), but the C44 parallel plane shear modulus is
under-predicted by an order of magnitude [22]. Alter-
native potentials have been proposed [23] that yield
accurate predictions for both the transverse normal and
shear moduli in graphite. Additional study is warranted
to assess the spatial interactions of delocalized bonds in
carbon nanotubes that may be underestimated using a
spherical Lennard–Jones model.

The developed analysis has been applied to the pre-
diction of transverse mechanical moduli of perfect car-
bon nanotube crystals. Due to the highly nonlinear van
der Waals cohesion between carbon nanotubes, the
effect of lattice defects may be expected to have a sig-
nificant impact on transverse bundle properties. This
issue together with some additional comments regarding
the use of the Lennard–Jones potential is presented in a
companion paper [26].
7. Concluding remarks

A consistent method has been formulated for and
applied to computing effective transverse mechanical
properties of nanotube crystals. The method is based on
specifying a unit cell configuration with periodic
boundary conditions, applying a deformation field
associated with a particular strain mode, and utilizing a
direct summation procedure to compute changes in
potential energy from which an effective elastic modulus
Table 1

Comparison of predicted elastic constants
Elastic constant
 Direct

method
Popov

[13]
Lu

[14]b

Tersoff

[12]
Bulk modulus K23 (GPa)
 45.8
 42.0
 18.0
 33.6
Shear modulus G23 (GPa)
 22.5
 5.3a
 –
 –
Young’s modulus G23 (GPa)
 60.3
 17.0
 –
 –
Normal stiffness C22 (GPa)
 68.3
 42.0
 78.0
 –
Poisson ratio 
23
 0.34
 0.75
 –
 –
a Value derived using relationship in Eq. (1).
b Results generated using (7,7) chiral nanotubes with dia-

meter=0.94 nm.
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may be obtained. For the present analysis, the disparity
between reported predictions of mechanical properties
that depend exclusively on van der Waals cohesion and
the paucity of available experimental data suggest that
much additional investigation is warranted in this area.
The development of a more realistic representation of
van der Waals interactions between nanotube surfaces
may be required to correlate analytical predictions with
future experimental measurements of nanotube crystal
properties.
Acknowledgements

The authors would like to thank Professor V. Popov
at the University of Sofia for helpful discussions during
the course of this work. S.J.V. Frankland was supported
by the National Aeronautics and Space Administration
under NASA Contract No. NAS1-97046 while in resi-
dence at ICASE, NASA Langley Research Center,
Hampton, VA 23681-2199, USA.
References

[1] Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, et al. Crys-

talline ropes of metallic carbon nanotubes. Science 1996;273:483–7.

[2] Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ,

Stockli T, et al. Elastic and shear moduli of single-walled carbon

nanotubes. Phys Rev Lett 1999;82:944–7.

[3] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy

MMJ. Young’s modulus of single-walled nanotubes. Phys Rev B

1998;58:14013–9.

[4] Sanchez-Portal D, Artacho E, Soler JM, Rubio A, Ordejon P. Ab

initio Structural, elastic, and virbrational properties of carbon

nanotubes. Phys Rev B 1999;59:12678–88.

[5] Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of C

and BxCyNz composite nanotubes. Phys Rev Lett 1998;80:4502–5.

[6] Cornwell CF, Wille LT. Elastic properties of single-walled carbon

nanotubes in compression. Solid State Commun 1997;101:555–8.

[7] Popov VN, Van Doren VE, Balkanski M. Elastic properties of

single-walled carbon nanotubes. Phys Rev B 2000;61:3078–84.
[8] Lu JP. Elastic properties of single and multilayered nanotubes. J

Phys Chem Solids 1997;58:1649–52.

[9] Frankland SJV, Caglar A, Brenner DW, Griebel M. Molecular

simulation of the influence of chemical cross-links on the shear

strength of carbon nanotube-polymer interfaces. J Phys Chem B

2002;106:3046–8.

[10] Pipes RB, Hubert P. Helical carbon nanotube arrays: mechanical

properties. Comp Sci Tech 2002;62:419–28.

[11] Girifalco LA, Hodak M, Lee RS. Carbon nanotubes, buckyballs,

ropes, and a universal graphitic potential. Phys Rev B 2000;62:

13104–10.

[12] Tersoff J, Ruoff RS. Structural properties of a carbon-nanotube

crystal. Phys Rev Lett 1994;73:676–9.

[13] Popov VN, Van Doren VE, Balkanski M. Elastic properties of

crystals of single-walled carbon nanotubes. Solid State Commun

2000;114:395–9.

[14] Lu JP. Elastic properties of carbon nanotubes and nanoropes.

Phys Rev B 1997;79:1297–300.

[15] Theodorou DN, Suter UW. Atomistic modeling of mechanical

properties of polymeric glasses. Macromolecules 1986;19:139–54.

[16] Fan CF, Hsu SL. Application of the molecular simulation tech-

nique to characterize the structure and properties of an aromatic

polysulfone system. 2 Mechanical and thermal properties.

Macromolecules 1992;25:265–70.

[17] Hashin Z, Rosen BW. The elastic moduli of fiber-reinforced

materials. J Appl Mech 1964;June:223–32.

[18] Allen MP, Tildesley DJ. Computer simulation of liquids.

Clarendon Press; 1987.

[19] Moore WJ. Physical Chemistry. 4th ed. Englewood Cliffs (NJ):

Prentice Hall; 1972. p. 913–4.

[20] Lu JP, Yang W. The shape of large single- and multiple-shell

fullerenes. Phys Rev B 1994;49:11421–4.

[21] Kelly BT, Duff MJ. On the validity of Lennard-Jones potentials

for the calculation of elastic properties of a graphite crystal.

Carbon 1970;8:77–85.

[22] Green JF, Bolland TK, Bolland JW. Lennard–Jones interactions

for hexagonal layered crystals. J Chem Phys 1974;61:1637–46.

[23] Kolmogorov AN, Crespi VH. Smoothest bearings: interlayer

sliding in multiwalled carbon nanotubes. Phys Rev Lett 2000;85:

4727–30.

[24] Pauling L. The nature of the chemical bond. 3rd ed. Ithaca (NY):

Cornell University Press; 1960. p. 85.

[25] Hamada N, Sawada SI, Oshiyama A. New one-dimensional con-

ductors: graphitic microtubules. Phys Rev Lett 1992;68:1579–81.

[26] Saether, E. Transverse mechanical properties of single-walled

carbon nanotube crystals. Part II: sensitivity to lattice distortion.

Comp. Sci. Technol. [in press].
1550 E. Saether et al. / Composites Science and Technology 63 (2003) 1543–1550


	Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli
	Introduction
	Material constitutive relationship
	Modified unit cell formulation
	Potential energy calculations
	Analysis methodology
	Results and discussion
	Concluding remarks
	Acknowledgements
	References


